СЕЛЬСКОХОЗЯЙСТВЕННЫЕ НАУКИ

AGRICULTURAL SCIENCES

УДК 634.8:631.52

DOI: 10.55934/2587-8824-2022-29-3-313-320

ОЦЕНКА ТЕХНОЛОГИЧЕСКОГО СООТВЕТСТВИЯ ЭНОКАРПОЛОГИЧЕСКИМ И ЭНОХИМИЧЕСКИМ ПОКАЗАТЕЛЯМ СОРТОПОПУЛЯЦИЙ НЕКОТОРЫХ ТЕХНИЧЕСКИХ И УНИВЕРСАЛЬНЫХ СОРТОВ ВИНОГРАДА

М. А. Гусейнов, А. С. Гусейнова, В. С. Салимов, Р. А. Асадуллаев, Х. Н. Насибов

В процессе научно-исследовательской работы изучены энокарпологические и энохимические показатели гроздей и ягод виноградных кустов в популяциях местных технических сортов Мадраса, Баянширей, Хиндогны, Ширваншахы и интродуцированного сорта Молдова универсального направления использования, которые являются ценным сырьем, в значительной степени составляющим материальную базу для производства национальных марок вин Азербайджана; по этим показателям определены степень разнообразия и изменчивости виноградного растения. Установлено, что кусты винограда разных сортов, в том числе кусты в популяции одного сорта (внутрисортовые), достоверно отличаются друг от друга по увологическим показателям. К этим показателям относятся размер грозди и ягод, масса грозди, количество ягод в грозди, масса 100 ягод, количество механических элементов грозди и их соотношение, энохимический состав сока и т.д. В результате биометрического и математико-статистического сравнительного анализа и группировки этих показателей было отобрано 5 первичных маточных кустов (протоклонов) для сортов Хиндогны и Мадраса, 4 протоклона для сортов Баянширей и Молдова, 2 протоклона для сорта Ширваншахы. Отобранные протоклоны отличаются от родительских кустов по одному или нескольким признакам и даже значительно превосходят их по многим признакам. Одним из признаков, повышающих технологическую пригодность технических сортов винограда, является выход сока. У родительских кустов этот показатель колеблется от 43,5 (Хиндогни) до 76,8% (Молдова), а у кустов-клонов изменяется от 45,8 (клон Ш-20-2 сорта Мадраса) до 75,0% (клон Аб-19-14 сорта Хиндогны, клон Гя-10-52 сорта Баянширей, клон Аб-20-м7 сорта Молдова). Количество сухого вещества у сортов Хиндогны, Мадраса, Молдова, Баянширей, Ширваншахы и их клоновых форм колеблется от 17,7 до 26,5 по шкале Брикса, что считается типичным для технических сортов винограда.

Ключевые слова: сорт винограда, местный сорт, гроздь, ягода, бессемянные сорта, продуктивность, рост растений, развитие, селекция.

При определении пригодности к использованию и направления технологического использования одно из основных мест занимают увологические исследования (механический состав и его особенности, химический состав и содержание в ягоде отдельных веществ, изменение состава в процессе созревания винограда, диетические и органолептические характеристики, ассортимент получаемой продукции и влияние на них факторов внешней среды и т.д.).

Увология (энокарпологическая и энохимическая) изучает механический и химический состав гроздей и ягод сортов винограда, их механические характеристики и закономерности их изменения; индивидуальные увологические особенности каждого отдельного сорта называют увографией, или же энографией. К предмету увологии относят механический состав, механические особенности, биохимический состав, содержание химических компонентов

в отдельных элементах грозди и ягод, изменение механического и химического состава винограда при созревании, влияние внешней среды на состав винограда и содержание компонентов, физиологические, органолептические и диетические особенности винограда, изучение винограда технологическими способами и оценка его технологической пригодности и др. В широком смысле механический состав понимается как соотношение механических и пластических элементов грозди и ягод и выражается соотношением отдельных элементов массы и количества грозди и ягод [7, 10, 13, 17, 19, 20, 22]. Увологическое изучение механического состава грозди и ягод позволяет определять соотношение ягод и гребня в грозди и кожице, мякоти, сока и семян – в ягоде. Гроздь состоит в основном из двух увологических органов - гребня и ягод. Многолетние увологические исследования показали, что при доле ягод в грозди на уровне 91,5-99 % технологическая пригодность сортов оценивается выше. В целом в общей массе грозди вес кожицы колеблется в пределах 0.9-38.6%, семян -0.9-10.8%, мякоти -71,1-95,5%. Исследования в области виноградарства свидетельствуют, что если в среднем доля ягод в грозди составляет 96,5%, гребня – 3,5%, виноград полностью отвечает технологическим требованиям. Несмотря на существование закономерностей касательно механических элементов и строения гроздей и ягод сортов винограда, их формирование и развитие в достаточной степени подвержено изменчивости под взаимным влиянием биологических особенностей сорта, экологических, антропогенных факторов. Из-за своей пластичности механические свойства винограда меняются под влиянием погодных условий года, топографического состояния участка (наклон и экспозиция склонов, высота над уровнем моря), состояния куста, расположения гроздей на кусте, морфометрических размеров гроздей и ягод, степени зрелости ягод и агротехнических мероприятий (орошение, удобрение, зеленые операции, нагрузка, дополнительное и искусственное опыление и т.д.) [4, 13, 17].

В то время как устойчивость и характер сортовых признаков имеет особое значение в ампелографии, размер и механические особенности определяют технологическую пригодность в столовом виноградарстве и перерабатывающей промышленности [4, 13, 17, 20, 21].

При проведении исследований по изучению увологических органов, особенностей сортов и клонов винограда, выращиваемого в Ампелографической коллекции, были исследованы такие показатели, как выход (в %) сока, кожицы, гребня и семян в грозди, масса 100 ягод, масса 100 семян, количество ягод в грозди, доля в грозди ягод (%), твердой кожицы (%), скелета (сумма кожицы и гребня, %), структурные показатели гроздей (соотношение мякоти или сока к скелету) и другие важные механические элементы.

Материалы и методы

Материалом для исследований послужили популяции, биотипы, кусты клоновых вариаций местных и интродуцированных сортов винограда (Хиндогны, Баянширей, Мадраса, Ширваншахы, Молдова), выращиваемые в Апшеронском опытном хозяйстве и Шамахинской опытной станции НИИ виноградарства и виноделия.

Сорта винограда были исследованы и описаны в цифровом формате с использованием предлагаемых Международной организацией винограда и вина (OIV) амплодескрипторов для изучения признаков и особенностей виноградных генотипов [2, 4, 12, 13, 18].

При изучении и оценивании клонового разнообразия популяций использовались традиционные и современные методы [1, 4, 13, 16]. Степень клонового разнообразия генотипов, или вариационной изменчивости, исследовалась по О.Б. Масюковой [9].

Известно, что обладающие древней историей аборигенные сорта винограда распространены в виде различных вариаций, биотипов и клонов [3, 5, 6, 8, 11, 14, 15]. С целью оценки клоновой изменчивости в виноградных популяциях были изучены размер и масса гроздей и ягод, количество гроздей, средняя масса грозди, масса 100 ягод и одной ягоды, количество ягод в грозди, урожайность куста, показатели сухих веществ (brix) и титруемой кислотности.

Доля гребня и ягод в грозди и в ягоде – кожицы (вместе с остатками мякоти), семян и сока (остаток после вычета из общей массы ягоды веса семян и кожицы) — определяются методом механического анализа. Вместе с этим размер ягод, их объем, устойчивость к раздавливанию и отрыву от плодоножки также относят к механическим особенностям.

При анализе механических особенностей столовых сортов винограда целесообразно для

сортов с крупными гроздями и крупными ягодами отбирать 2 кг, для столовых и технических сортов со средними и мелкими гроздями и ягодами -1 кг урожая винограда.

Результаты и их обсуждение

В ходе исследований изучалось увологическое разнообразие кустов в популяции технических сортов винограда, выращиваемых на опытном участке института. Выяснилось, что у сорта Хиндогны по увологическим признакам имеется несколько вариаций. Изучение вариаций показало, что размер грозди колеблется в промежутке 14,6×9,8-25,7×12,8 см. Среди клонов наиболее крупные грозди были отмечены у клоновых форм Хиндогны 20-3 (22,6×11,3 см) и Хиндогны 20-7 (25,7×12,8 см). По размеру ягоды сорта и клоновые формы значительно различались между собой - от 15,2×14,4 мм до 21,6×20,4 мм. Среди них наиболее крупные ягоды были у клоновых форм Хиндогны Ab-19-14 (21,6×20,4 мм) и G-19-11 (21,2×19,8 мм). Средняя масса грозди колебалась в пределах от 186 г (контроль) до 456 г (клоновая форма Хиндогны 20-7). Количество ягод в грозди является одним из важнейших показателей, формирующих массу грозди. Было установлено, что этот показатель у сорта и клоновых форм Хиндогны варьирует между 140 (контроль) и 302 шт. (Хиндогны 20-7) (см. табл. 1).

В ходе исследований были изучены механические показатели гроздей на кустах в популяции Хиндогны. Так, было определено, что масса гребня — одного из основных элементов грозди — меняется в пределах 3,8 (клоновая форма Хиндогны Ab-19-14) — 7,0 г (контроль). Также среди клонов Хиндогны резко различается количество твердого остатка 21,2 (Хиндогны Ab-19-14) — 49,5% (контроль).

Изучался и один из важнейших механических показателей — выход сока. Выяснилось, что доля сока варьирует в пределах 43,5—75,0%. Наибольшее значение этого показателя отмечалось у клоновых форм Хиндогны 20-7 (73,0%) и Хиндогны Аb-19-14 (75,0%). Отражающий величину ягод показатель массы 100 ягод составил по вариантам от 119 до 172 г; указанный наибольший показатель (172 г) был отмечен у клоновой формы Хиндогны Ab-19-14.

Масса 100 семян у клонов варьировала в пределах 3,2—4,6 г. В контроле и у клоновых форм сорта Хиндогны количество сухих ве-

ществ составило от 19,0 до 25,2 brix; наибольшее значение этого показателя было зафиксировано в контрольном варианте. Уровень одного из основных качественных показателей винограда — титруемой кислотности — находился в пределах 6,0–8,0 г/дм³. Наибольшее количество титруемых кислот было отмечено в ягодах клоновой формы Хиндогны Ş-1-20 (8,0 г/дм³).

При изучении увологических признаков вариаций сорта Мадраса было установлено, что размер гроздей меняется в промежутке $19,2 \times 9,2 - 27,2 \times 14,6$ см. Среди клонов наибольший размер гроздей был отмечен у форм Ş-20-5 (27,8-14,6 см) и Ş-20-3 (24,8×12,3 см). В популяции Мадраса большой разброс был отмечен также по размеру ягод – от $15,0 \times 14,6$ мм до 19,2×18,5 мм. Клоновыми формами с наиболее крупными ягодами были Ş-20-3 (19,2×18,5 мм) и Ş-20-1 (19,2×18,0 мм). Важный элемент урожайности - средняя масса грозди - по сортам и клоновым формам составила от 176 до 496 г. По средней массе грозди (496 г) форма Ş-20-3 сорта Мадраса резко отличается от других клоновых форм. Количество ягод в грозди колеблется в пределах 100-176. Наивысшее значение этого показателя (176 ягод) отмечено у клоновой формы Мадраса Ş-20-4. Что до механического состава грозди и ягод сорта Мадраса, масса гребня составила 3,2-7,6 г, наивысшее значение этого показателя (7,6 г) было отмечено у клоновой формы Мадраса Ş-20-5. Выход сухого остатка у клоновых форм сорта Мадраса колебался в пределах 24,0-49,9%, с наивысшим значением показателя у клоновой формы Ş-20-2 (49,9%). Количество сока колебалось между 45,8 и 72.4%, с наивысшим значением у клоновой формы Ş-20-1 (72%). Показатель крупноягодности – масса 100 ягод – у кустов сорта Мадраса колебалась между 101 и 265 г. Наибольшее значение этого показателя наблюдалось у клоновой формы Ş-20-3 (265 г). Масса 100 семян у исследуемых сортов и клонов колебалась в пределах 3,1-4,6 г. По этому показателю у клоновых форм не было отмечено большого разброса. Показатель качества – количество сухих веществ по сортам и клонам колебалось в промежутке 22,6-24,0 brix. Одинаковое значение этого показателя (24,0 brix) было отмечено у клоновой формы Ş-20-5 и в контроле. Значение титруемой кислотности в популяции сорта Мадраса колебалось в пределах 5,5-7,0 г/дм3, с наивысшим показателем (7,0 г/дм3) у клоновой формы Мадраса Ş-20-2.

При увологическом изучении сорта Ширваншахы были обнаружены две вариации. Так, размер грозди у клоновой формы Ширваншахы колеблется в пределах 24,6×11,6–32,5×12,6 см. Наиболее крупная гроздь была отмечена у клоновой формы Kr-19-15 (32,5×12,6 см). По размеру ягод кусты сорта Ширваншахы

значительно различались между собой — от 16.8×16.0 мм до 21.4×20.3 мм. Самые крупные ягоды (21.4×20.3 мм) были у клоновой формы Ab-19-17. Клоновые формы резко различались между собой по массе грозди. Этот показатель меняется в интервале 386-626 г, и наибольшая масса грозди (626 г) была отмечена у клоновой

Таблица 1 – Энокарпологические (увологические) показатели сортов и клоновых форм винограда

Сорта, клоновые формы и биотипы	Размер грозди, см		Размер ягоды, мм		Средняя масса грозди, г	Количество ягод одной грозди, шт.	ебня, %	остаток, %	во сока, %	00 ягод, г	Масса 100 семян, г	гаток, Вгіх	Титруемая кислотность, г/дм ³
	длина	ширина	длина	ширина	Средняя ма	Количество яг в одной грозди,	Доля гребня,	Твердый остаток,	Количество сока,	Масса 100 ягод,	Macca 10	Сухой остаток,	Титруемая кис
Хиндогны (контроль)	14,6	9,8	15,2	14,4	186	140	7,0	49,5	43,5	119	4,0	25,2	6,5
Хиндогны Ş-1-20	15,8	10,2	19,5	18,2	332	275	4,5	32,5	63,0	153	3,2	19,0	8,0
Хиндогны 20-3	22,6	11,3	18,5	18,0	370	295	4,0	25,0	71,0	135	3,7	22,8	6,2
Хиндогны 20-7	25,7	12,8	19,0	18,2	456	302	4,4	22,6	73,0	148	4,6	20,4	6,6
Хиндогны G-19-11	18,3	9,6	21,2	19,8	250	172	4,8	27,2	68,0	164	3.3	24,8	6,0
Хиндогны Аb-19-14	17,6	11,8	21,6	20,4	302	186	3,8	21,2	75,0	172	3,8	23,4	6,4
Мадраса (контроль)	19,2	9,2	15,0	14,6	176	154	5,1	42,6	52,3	111	4,3	24,0	5,5
Мадраса клон Ş-20-1	20,8	9,6	19,2	18,0	386	160	3,6	24,0	72,4	236	4,5	22,6	6,2
Мадраса клон Ş-20-2	19,8	10,7	15,4	14,6	162	161	4,9	49,9	45,8	101	4,6	22,8	7,0
Мадраса клон Ş-20-3	24,8	12,3	19,2	18,5	496	167	3,7	29,3	67,0	265	3,1	23,0	6,0
Мадраса клон Ş-20-4	22,5	11,4	16,6	15,8	249	176	3,2	36,2	60,6	143	3,6	23,0	6,0
Мадраса клон Ş-20-5	27,8	14,6	15,8	15,0	582	100	7,6	28,0	64,4	142	3,6	24,0	6,3
Ширваншахы (контр.)	24,6	11,6	16,8	16,0	386	206	3,6	22,4	74	187	4,1	26,5	4,8
Ширваншахы Kr-19-15	32,5	12,6	19,2	18,6	626	316	4,0	32,7	63,4	217	4,7	23,0	6,4
Ширваншахы Аb-19-17	28,8	14,2	21,4	20,3	596	262	4,2	20,8	75,0	246	4,8	23,6	6,2
Баянширей (контроль)	16,2	8,8	17,8	17,2	196	110	4,3	31,8	63,9	196	3,8	19,2	7,6
Баянширей Ab-14-9	22,5	9,2	19,4	18,5	230	118	4,0	28,0	68,0	218	4,4	18,4	8,4
Баянширей Ab- 14-22	24,4	9,8	20,6	19,2	286	128	4,2	25,8	70,0	246	4,6	18,8	8,2
Баянширей Gə- 10-48	27,6	11,4	21,2	19,4	462	190	6,4	23,8	69,8	240	4,4	20,4	7,2
Баянширей Gə- 10-52	25,6	12,6	20,5	19,0	426	194	3,8	21,2	75,0	220	4,0	22,6	6,8
Молдова (контроль)	17,4	11,6	23,6	19,2	358	112	3,1	20,1	76,8	317	5,2	18,0	7,5
Молдова Ş-20-m1	21,6	11,8	24,8	20,4	336	90	3,3	35,1	61,6	363	5,6	17,7	9,0
Молдова Ş-20-m2	24,7	12,0	25,7	22,6	696	149	2,0	29,5	68,5	477	6,2	18,0	9,1
Молдова Ab-20-m7	26,4	12,8	26,5	22,8	782	176	2,5	22,5	75,0	482	5,8	21,0	7,2
Молдова Ab-19-m9	19,8	11,7	26,0	22,4	435	114	2,7	25,6	71,7	470	5,8	20,0	7,6

Примечание: К твердому остатку относятся кожица, остатки мякоти и семена.

формы Kr-19-15. Количество ягод в грозди составило 206-316 штук, с наибольшим показателем также у клоновой формы Kr-19-15 (316 ш.). Масса гребня мало различалась между клонами и составила 3,6-4,2 г. Количество твердого остатка менялось в промежутке 20,8-32,7%, с наибольшим значением у клоновой формы Kr-19-15 (32,7%). Выход сока по сортам и клонам составил 63,4–75,0%, наибольшие значения (74,0–75,0%) были отмечены у клоновой формы Ширваншахы Ab-19-17 и в контроле. Macca 100 ягод колебалась в пределах 187-246 г, 100 ягод – 4,1–4,8 г. Наивысший показатель массы 100 ягод наблюдался у клоновой формы Ширваншахы Аb-19-17 (246 г). Ширваншахы является лидером среди местных сортов Азербайджана по сахаристости. Так, по сорту и клонам сахаристость (сухие вещества) составила 23,6–26,5 brix, титруемая кислотность 4,8-6,2 г/дм³.

В ходе исследований были изучены увологические признаки сорта Баянширей по четырем вариациям. Размер грозди у клонов этого сорта варьировал в пределах 16,2×8,8 см -27,6×11,4 см. Среди клонов наиболее крупные грозди были отмечены у форм Gə-10-48 (27,6×11,4 см) и Gə-10-52 (25,6×12,6 см). Размер ягоды менялся в пределах 17,8×17,2 мм -21,2×19,4 мм, ягоды клоновой формы Баянширей Gə-10-48 выделялись по этому показателю среди клонов (21,2×19,4 мм). Средняя масса грозди составила от 196 до 462 г, с наивысшим показателем у клоновой формы Gə-10-48. Количество ягод в грозди сорта Баянширей менялось в широком диапазоне – от 110 до 194. По этому показателю резко выделялись клоновые формы Gэ-10-48 и Gэ-10-52 (190-194 ягод). Также были изучены увологические параметры кустов в популяции Баянширей. Масса гребня в грозди колебалась в пределах 6,4-3,8%, с наибольшим значением показателя у клоновой формы Gә-10-48 (6,4 г). У исследуемых растений твердый остаток колебался в пределах 21,2-31,8%, и наибольшее значение было зафиксировано контроле. Содержание сока варьировало в пределах 63,9-75,0%, с наибольшим значением в клоновой форме G₂-10-52 (75%). Macca 100 ягод у сортов и клонов менялась в пределах 196-246 г. Этот показатель был наиболее высок в клоновых формах G₂-10-48 и Ab-14-22. По массе 100 семян кусты незначительно различались между собой (3,8–4,4 q). Наибольшее количество сухих веществ было отмечено у клоновой формы Баянширей Gə-10-52 (22,6 brix), при общем их содержании в пределах 18,4-22,6 brix; титруемая кислотность варьировала между 6,8 и 8,4 г/дм³ и была относительно высокой у клоновых форм Баянширей Ab-14-22 и Ab-14-9 (8,2-8,4 г/дм³).

Увологические признаки сорта Молдова также были исследованы по четырем вариациям. Изучение вариаций показало, что размеры грозди варьируют в пределах 17,4×11,6 см -26,4×12,8 см. По крупности грозди клоновые формы Молдова Аb-20-m7 (размеры грозди 26,4×12,8 см) и Молдова Ş-20-m2 (24,7×12,0 см) незначительно отличались от других клоновых форм. Размер ягод в грозди по клонам варьировал в пределах 23,6×19,2-26,5×22,8 мм. По размеру ягод клоновые формы заметно отличались между собой. У сорта Молдова средняя масса грозди меняется в пределах 336-782 г, с наибольшим значением у клоновой формы Аb-20-m7. Количество ягод в грозди сорта Молдова колебалось между 90 (клоновая форма S-20-m1) и 176 (клоновая форма Ab-20-m7).

Также был изучен механический состав гроздей сорта Молдова. Так, масса гребня по сортам и клоновым формам колебалась в пределах 2,0-3,3%, т.е. по этому показателю расхождения были довольно незначительными. Количество сухого остатка в грозди менялось в пределах 20,1–35,1%, с наивысшим значением у формы Ş-20-М1. Количество сока винограда варьировало между 61,6 и 76,8%, с высокими показателями у клона Аb-20-m7 и в контроле (75,0% и 76,8% соответственно). Масса 100 ягод составила 317-482 г, с наивысшим значением у клона Аb-20-m7. Масса 100 семян по сортам и клонам менялась незначительно - от 5,2 до 6,2 г. При изучении качественных показателей кустов в популяции Молдова наибольшее количество сухих веществ было отмечено у клоновой формы Молдова Ab-20-m7 (21 brix); в целом этот показатель менялся в пределах 17,7-21,0 brix. Значение титруемой кислотности колебалось в интервале 7,2-9,1 г/дм³, с наивысшим показателем у клоновых форм Молдова Ş-20-m1 (9,0 г/дм3) и Молдова \S -20-m2 (9,1 г/дм³).

Согласно дескриптору Международной организации винограда и вина (OİV 206), грозди размером до 8 см считаются очень мелкими (1 балл), от 8 до 12 см — мелкими (3 балла), 12–16 см — средними (5 баллов), 16–20 см — крупными (7 баллов), 20–24 см — очень крупными

(9 баллов). Группирование по популяции всех сортов показало, что у абсолютного большинства сортов и клонов (15 сортов и клонов) формировались крупные (20–24 см) грозди. 3 сорта обладают гроздьями средней величины – в пределах 12–16 см. У 7 сортов этот показатель меняется в пределах 16–20 см и больше. В целом сорта и клоновые формы значительно различались по размеру гроздей – от 14,6 см (Хиндогны – контроль) до 32,5 см (Ширваншахы Kr-19-15).

Согласно ампелодескриптору OİV 220, ягоды величиной (в диаметре) до 8 мм считаются очень мелкими (1 балл), 8–13 мм – мелкими (3 балла), 13–18 мм – средними (5 баллов), 18–23 мм – удлиненными. При группировании выяснилось, что по этому показателю 12 сортов и клонов обладают удлиненными ягодами с диаметром от 18 до 23 мм. 8 сортов имели среднее значение этого показателя — 13–18 мм. Ягоды 5 сортов, у которых значение этого показателя составило 23–28 мм, отнесены к сильно удлиненным. По размеру ягод клоновые формы сорта Молдова значительно превосходят другие сорта и клоновые формы.

Средняя масса гроздей на кустах сорта Хиндогны составляла 186—456 г, сорта Мадраса — 162—582 г, Ширваншахы — 386—626 г, Баянширей — 196—462 г, Молдова — 336—782 г, и по всем популяциям встречались грозди мелкого, среднего, крупного и очень крупного размера.

Если обратить внимание на количество ягод в гроздях сортов и клонов винограда, то этот показатель колебался: по сортам Мадраса и Молдова – 90–176, Хиндогны – 140–302, Ширваншахы – 206–316, Баянширей – 110–190 шт. По количеству ягод в грозди среди других сортов и клоновых форм особо выделяется форма Ширваншахы Kr-19-15 – 316 ягод.

Количество сухого остатка у сортов и клоновых форм Ширваншахы, Баянширей и Молдова было на уровне 20–32%. У сортов и клонов сортов Мадраса и Хиндогны этот показатель менялся в пределах 21,2–49,5%, с наибольшим значением у сорта Хиндогны (контроль). Выход сока у сортов и клонов Хиндогны, Мадраса, Ширваншахы, Баянширей, Молдова варьировал в диапазоне 43,5–76,8%. В целом по количеству сока наивысший показатель был отмечен у сорта Молдова (контроль).

Согласно дескриптору OİV 503, ягоды считаются очень мелкими (1 балл), если масса

100 ягод меньше 100 г, мелкими (3 балла), если масса 100 ягод находится в промежутке 110–300 г, средними (5 баллов) при 310–500 г, крупными (7 баллов) – при 510–700 г и очень крупными (9 баллов), если масса 100 ягод составляет 710–900 г и более. Группирование по этому признаку показало, что большинство сортов и клонов (20) обладают мелкими ягодами. У 5 сортов ягоды средней величины, у них масса 100 ягод меняется в пределах 317–482 г. Как видим, среди исследуемых сортов и клонов нет обладающих очень мелкими, крупными и очень крупными ягодами. Масса 100 ягод по сортам и формам менялась в промежутке между 101 (Мадраса Ş-20-2) и 482 г (Молдова Ab-20-m7).

По дескриптору OİV 243 семена считаются очень мелкими (1 балл), если масса 100 семян находится в пределах 4–10 г, мелкими (3 балла—при 10,1–25 г, средними (5 баллов)—при 25,1–40 г, крупными (7 баллов) — при 40,1–55 г и очень крупными (9 баллов), если масса 100 семян превышает 55 г. Исследуемые нами сорта обладали очень мелкими семенами, с массой 100 семян от 3,2 до 6,2 г.

По сортам и клоновым формам Хиндогны, Мадраса, Молдова, Баянширей, Ширваншахы количество сухих веществ составило от 17,7 до 26,5 brix, что считается удовлетворительным значением для этого показателя.

У изучаемых сортов и клоновых форм титруемая кислотность менялась в пределах 4,8–9,1 г/дм³. Наибольшее значение титруемой кислотности (9,1 г/дм³) было отмечено у клоновых форм Молдова Ş-20-m1 и Молдова Ş-20-m2.

Выводы

Исследования показали, что изучаемые сорта обладают высокой степенью клонового разнообразия по своим энокарпологическим и энохимическим показателям. Кусты винограда разных сортов, в том числе кусты в популяции одного сорта (внутрисортовые), достоверно отличаются друг от друга по таким параметрам, как размер грозди и ягод, количество ягод в грозди, количество твердого остатка, доля в грозди ягод, твердой кожицы, скелета, структурные показатели гроздей (соотношение мякоти или сока к скелету), другие механические элементы, показатели сухих веществ (brix) и титруемой кислотности.

Вместе с тем, математико-статистически подтвержденные результаты биометрических

и биохимических анализов позволяют сделать вывод, что по показателям, определяющим технологическую ценность винограда, таким, как выход сока, количество сухого остатка и содержание титруемых кислот, испытуемые сорта полностью отвечают требованиям к винограду, предназначенному для технической переработки, и могут служить сырьевой базой для производства различных видов вина высокого качества; также отобранные протоклоны могут значительно превосходить родительские формы по ряду показателей.

Список литературы

- 1. Борисенко М. Н., Студенникова Н. Л., Котоловець З. В. Изучение биотипов винограда сорта Бастардо магарачский // «Магарач». Виноградарство и виноделие. 2015. № 3. С. 60–61.
- 2. Гусейнов М. А. Ампелодескрипторная модель перспективности некоторых столовых и технических сортов винограда Азербайджана // Научные труды СКФНЦСВВ. 2020. Т. 30. С. 98–107.
- 3. Зармаев А. А. Методика разработки агроэкологического паспорта сорта винограда // Вестник российский сельскохозяйственной науки. 2010. № 3. С. 44–46.
- 4. Зармаев А. А., Борисенко М. Н. Селекция, генетика винограда и ампелография. От теории к практике. Симферополь : ФГБНУ ВННИИВиВ «Магарач» РАН, 2018. 406 с.
- 5. Ильницкая Е. Т., Супрун И. И., Токмаков С. В. Идентификация клоновых вариаций сортов винограда Каберне-совиньон и Саперави на основе анализа микросателлитных локусов // Плодоводство и виноградарство Юга России. 2013. № 21 (3). С. 1–8.
- 6. Каширина Д. А. Оценка потенциальной плодоносности клонов европейских сортов винограда в условиях западного предгорно-приморского района на Крым // Известия сельскохозяйственной науки Тавриды. 2015. № 4 (167). С. 43–47.
- 7. Кулиджанов Г. В., Богатырский А. Н. Увологическая оценка местных бессарабиских сортов винограда в условиях агрофирмы «Шабо» Белгород-Днестровского района Одесской области // Виноградарство и виноробство. 2008. № 45 (2). С. 55–58.
- 8. Курбанов М. Р., Салимов В. С. Отбор ценных генотипов из популяций сортов винограда Чахраи Кишмиш и Аг кишмиш методом

- клоновой селекции в условиях Апшерона // Доклады (НАНА). 2011. № 5. С. 86–94.
- 9. Масюкова О. В. Методы селекционногенетических исследований плодовых пород. Кишинев: Штиинца, 1973. 48 с.
- 10. Прах А. В., Нудьга Т. А., Гугучкина Т. И. Сравнительная оцека белых форм винограда селекции СКЗНИИСиВ по органолептическим и физико-химическим характеристикам // Резюме и доклады международного симпозиума «Интерактивная ампелография и селекция винограда». Краснодар, 2012. С. 177–181.
- 11. Салимов В. С. Определение и изучение вариаций и биотипов в популяциях некоторых столовых сортов винограда // Аграрная наука Азербайджана. 2011. № 3. С. 31–35.
- 12. Салимов В. С. Ампело-дескрипторное показатели некоторых местных сортов винограда Азербайджана // Виноделие и виноградарство. 2016. № 6. С. 30–34.
- 13. Салимов В. С. Ампелографический скрининг винограда. Баку: Муаллим, 2019. 319 с.
- 14. Оценка новых интродуцентных сортов винограда в условиях Азербайджана / В. С. Салимов, М. А. Гусейнов, Х. Н. Насибов, А. С. Шукюров // АПК России. 2018. Т. 25. № 3. С. 444–447.
- 15. Студенникова Н. Л., Котоловець З. В. Выделение и изучение биотипов в популяции сорта винограда Цитронный Магарача в условиях Алуштинской долины // «Магарач». Виноградарство и виноделие. 2016. № 3. С. 3–4.
- 16. Трошин Л. П. Милованов А. В., Звягин А. С. Этюд совершенствования клоновой селекции // «Магарач». Виноделие и виноградарство. 2015. № 3. С. 33–36.
- 17. Шарифов Ф. Х. Виноградарство. Баку : Маариф, 1988. 296 с.
- 18. Шыхлинский Г. М. Генетика и селекция виноградного растения. Баку : Муаллим, 2016.456 с.
- 19. Ujmajuridze L., Mamasakhlisashvili L. Biological and technological characteristics of Georgian wine and table grapes // Owned by the authors, published by EDP Sciences. 2015.
- 20. Ujmajuridze L., Mamasakhlisashvili L. Phenological and Enocarpological study of local grapevine varieties from Kartli province of Georgia // Georgian academy of agricultural sciences. No 2 (38).
- 21. Ujmajuridze L., Mamasakhlisashvili L. Enocarpological and phonological investigation of the rare vareties of grape vine from kakheti and

racha-lechkhumi // Viticulture and wine-making in european countries-historical aspects and prospects Tbilisi Georgia. 2017.

Гусейнов Мовлуд Арастун, канд. техн. наук, доцент, ведущий научный сотрудник, Экономический университет.

E-mail: movludh@mail.ru.

Гусейнова Афет Сабир, канд. с.-х. наук, заведующий отделом, Научно-исследовательский институт виноградарства и виноделия.

E-mail: a_huseynova73@mail.ru.

Салимов Вугар Сулейман, д-р с.-х. наук, доцент, директор, Научно-исследовательский институт виноградарства и виноделия.

E-mail: vugar salimov@yahoo.com.

Асадуллаев Рауф Айдын, канд. с.-х. наук, доцент, заместитель директора, Научно-исследовательский институт виноградарства и виноделия.

E-mail: raufasad@mail.ru.

Насибов Хикмет Насир, канд. с.-х. наук, доцент, докторант, Научно-исследовательский институт виноградарства и виноделия.

E-mail: khikmet@mail.ru.

* * *